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Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to 

create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D 

bioprinting adopts a layer-by-layer method, using materials known as bio-inks to build structures resembling 

tissues. This study introduces an open-loop control system designed to improve the accuracy of extrusion-based 

bioprinting techniques, which is composed of a specific experimental setup and a series of algorithms and models. 

Firstly, a method employing Logistic Regression is used to select the tests that will serve to train and test  

the following model. Then, using a Machine Learning Algorithm, a model that allows the optimization of printing 

parameters and enables process control through an open-loop system was developed. Through rigorous 

experimentation and validation, it is shown that the model exhibits a high degree of accuracy in independent tests. 

Thus, the control system offers predictability and adaptability capabilities to ensure the consistent production  

of high-quality bioprinted structures. Experimental results confirm the efficacy of this machine learning model 

and the open-loop control system in achieving optimal bioprinting outcomes. 

1. INTRODUCTION 

3D Bioprinting, also known as Additive Biomanufacturing, is a process that involves 

positioning biomaterials and living cells layer by layer to create engineered tissues and organs 

in 3D, preserving cellular viability [1]. Bioinks, used in bioprinting, consist of natural or 

synthetic biomaterials mixed with living cells. They come in two main types: cell-based 

bioinks with live cells alone or hydrogel-based bioinks combined with cell-laden natural, 

synthetic, or decellularized tissue hydrogels. Coupled with post-processing to ensure the 

maturing of the living construct, the potential applications for bioprinting includes [2]: in vitro 

3D tissue/organ models for drug screening, organ development, toxicological, cosmetic 

research, etc., and tailoring of living structures for clinical transplantation or tissue repair. 
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Bioprinting technologies are categorized into three main types based on their physical 

principles: extrusion-based bioprinting (EBB), droplet-based bioprinting (DBB), and light-

based bioprinting (LBB) [3]: 

• EBB employs a syringe-like extruder to deposit bioink as continuous filaments 

through  

a needle, accommodating a wide range of bioinks with high cell densities, suitable 

for complex tissues. 

• DBB operates like inkjet printers, using bioink composed of living cells in a hydro-

gel. It deposits tiny droplets using electrical, thermal, or acoustic energy, ideal for 

high-resolution printing and creating thin tissue layers and vascular networks. 

• LBB uses laser power for precision through photopolymerization or bioink transfer, 

offering high cell viability and suitability for delicate structures. 

EBB is the most extended family of technologies [4] because of its simpler 

implementation and flexibility to work with various materials. Three main actuation systems 

are used: pneumatic, mechanical (screw-or plunge-driven), and solenoid-based systems. 

Among these, pneumatic actuation systems are the most widely spread, because of their 

simplicity and suitability for working in sterile conditions. Most commercial solutions for 

bioprinting use this technology. However, this approach poses a challenge to obtain 

geometrically accurate constructs: the complex relation between the input pressure and the 

output flow of material through the needle, which is dependent of the rheological properties 

of the material. On top of the material flowrate in the needle, the size and shape of the filament 

is also dependent on printing parameters as layer height, so this relation is key to plan 

correctly the trajectories to bioprint a given construct. An imbalance between the expected 

size of the filament and the real one can lead to over-extrusion or under-extrusion. The error 

successively accumulates layer by layer, which leads to relatively important error in the final 

geometry. 

 Usually, the method to attain a given filament size is through trial and error. All of the 

printing parameters fixed except for pressure, the latter is adjusted iteratively [5]. This leads 

to waste of bioink, very costly per unit volume. Imprecise measuring during the initial layer 

might lead to unsatisfactory results with an increasing number of layers, as the error is 

cumulative. This phenomenon is enhanced with increasing printing precision, i.e. with smaller 

layer height and needle diameter. On top of issues with the control of the geometry of the 

filament during the extrusion, the choice of materials and printing parameters is non-trivial, 

as optimizing final shape fidelity as well as cell survivability often leads to opposite 

requirements. Two of these dualities can be identified: (i) stiff hydrogels lead to more 

structural integrity vs. soft hydrogels lead to higher cell viability during the extrusion as well 

as more cell interaction after extrusion [6], (ii) smaller extrusion needle diameter leads to 

higher printing precision, but this also decreases cell viability as they suffer from more shear 

stress during printing. Rheological models have been tested to establish a relation between 

input pneumatic pressure and output material flowrate [7]. A rheological test is performed to 

characterize the bioink, using Dynamic Mechanical Analysis (DMA). Results are then applied 

to a model, which predicts flowrate in function of input pressure. This method is incomplete 

as the relation between flowrate and filament size and shape is not straightforward given  

the layer height and printing speed. Furthermore, the manipulation of bioinks to perform  
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the DMA test can be difficult and material consuming. This is depending on the equipment 

used, and the cost of the equipment can be very high. In recent years, machine learning (ML) 

models have gained the remarkable ability to discern intricate data interactions from 

experimental data, enabling them to extrapolate their findings to more complex scenarios and 

objects where traditional handcrafted rules may not apply (long). This transformation has 

triggered a change in thinking towards data-driven approaches in various engineering 

disciplines [8]. Establishing a correlation between process parameters and quality outcomes 

often necessitates the derivation of empirical models, which can be accomplished using 

conventional statistical tools or by embracing ML techniques [9]. Consequently, data-driven 

machine learning algorithms, equipped with robust predictive capabilities, offer distinct 

advantages when it comes to predicting behaviours and exploring novel models [10].  

Recent studies have shown successful applications of machine learning techniques to 

enhance the 3D printing of biomaterials [11–15]. In these studies, ML has been employed for 

three main purposes:  

1. Predicting and optimizing printing parameters [16], aiming to maximize the structural 

properties of the printed biomaterials,  

2. Material printability optimization, i.e. studying suitable rheological properties which 

result in better printability [17] and  

3. Quality assessment of prints, to identify defects or imperfections in the printed construct 

[18]. 

In this paper, an open-loop control system using a ML model is proposed, consisting  

of an initial training phase, which uses a relatively low quantity of material (1 mL per 100 

filaments approximately) and generates a precise model capable of predicting the output size 

and shape of the filament for a given material. It uses little supplementary material (two 

cameras) and can be applied to a large set of EBB techniques, including Micro-extrusion 

Bioprinting and FRESH [19]. A highly automatized protocol has been accomplished through 

the development of software communicating with all the instruments involved, which makes 

possible to attain a high cadence of data production (140 filaments created and analysed per 

hour). This allows the system to remain profitable in producing a high-quality ML model with 

little time investment. The model and is directly applicable after computing and can be 

extended afterwards to a wider range of printing parameters. Section 2 of this paper presents 

the state of the art in two fields: measuring techniques in the scope of bioprinting and Machine 

Learning models. Section 3 presents materials, methods, and approaches that the authors used 

to collect data and train the model, showing an implementation of this open-loop control 

system, as well as results following the application of each method. Finally, Section 4 

discusses conclusions and perspectives. 

2. STATE OF THE ART 

2.1. GEOMETRY MEASUREMENT 

Geometry measurement in bioprinting has its own challenges given the specific 

constraints of the domain: (i) soft and thermally sensitive materials and (ii) sterility needs to 
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be preserved to ensure the correct development of living cells. Thus, non-invasive measuring 

methods need to be implemented. Many techniques have been used to achieve this, which go 

from 2D imagery, which allows to measure geometry from a 2D perspective, to scanning, 

which allows the direct reconstruction of 3D shapes. Some of these techniques are listed 

below: 

• Common optical sensors include high-speed cameras, pyrometers, in-line cameras, 

and in-line photodetectors [20]. These optical sensors can provide great insight into 

each layer, but are limited to observing only the surfaces. 

• Optical coherence tomography (OCT) is an imaging technique that uses low-

coherence light to capture micrometer-resolution, 2D- and 3D-dimensional images 

from within optical scattering media (e.g., biological tissue). OCT has recently been 

proposed to provide sub-surface information regarding the printed part [21, 22]. 

• Magnetic resonance imaging (MRI) is a 3D imaging technique that offer a high 

measurement depth for monitoring and characterizing heterogeneous soft (hydrated) 

materials at ambient conditions [23]. 

• Ultrasonic sensors have been used to detect subsurface defects by sending ultrasonic 

waves [24, 25]. 
For the purpose of the system to be implemented in this paper, common optical sensors 

and more precisely cameras are an optimal choice, because of their ease of integration and 

capacity to detect edges on any kind of material (provided an adequate background). To 

overcome the limitation of recovering only 2D geometry, multiple views can be used to 

measure different dimensions, although full 3D surface reconstruction remains out of scope.  

2.2. PHYSICAL MODELS 

Many physical models based on the rheology of the bioinks have been developed. 

Bioinks are usually modelled as shear-thinning fluids, which enables to deduce the equation 

of the flow through the extrusion needle and thus estimate the size of the printed filament, as 

for example, in the Ostwald-de Waele model [7]. These models have been proven precise 

within bounded operating limits but may struggle to properly predict results in atypical 

operating conditions (for instance, with high pressures) [26]. In addition, as these models only 

predict flow through the extrusion needle, they do not provide information about the shape of 

the filament once extruded as it is affected by gravity. This information is key as EBB 

techniques build layer by layer, so it is the precise knowledge of final filament shape that 

allows for overall high printing precision. 

2.3. MACHINE LEARNING METHODS 

Numerical models can be an alternative to guide the experimentations and drastically 

reduce the numbers of trials for optimizing the parameters. Yet, such numerical models do 

not exist. Hence, a methodology is proposed to build a numerical direct model predicting the 

shape and size of a filament for a given set of parameters. This model is data-driven, based 
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on a set of experiments and can predict any new combination of parameters. This way, once 

calibrated, no more experiments would be required to investigate the best sets of parameters 

for a desired filament result. For data-driven modelling, Artificial Intelligence, and especially 

Machine Learning in this context, is the numerical tool to be used. Indeed, a non-linear multi-

parametric model can be performed, relating inputs and outputs. Once the relations found 

based on data points, the model can be queried for a new set of parameters to be tested and 

answers in real-time. The studied data points used for training the model are in this case the 

experiments parameters and a photo of the result filament. 

Once this direct model validated, an inverse model can be built for the final objective. 

Indeed, in use the numerical model must advise the experiment with optimal process parame-

ters based on a target geometry. 

3. MATERIALS, METHODS, AND RESULTS 

3.1. EXPERIMENTAL SETUP AND MATERIALS 

The experimental setup consists of the following elements (cf. Fig. 1): 

• Bioprinter: This is a self-developed prototype in the lab. It is a Cartesian machine 

with three axes. A linear motor (Parker, MX80LS) drives each axis (with 

approximately a 140 mm travel and a precision of 0.1 µm). The Z-axis moves the 

syringe holder vertically, while the x and y-axes move the platform. An MC405 

motion controller (Trio Motion Technology) controls the axes. It uses an ARM11 

processor. Both the platform and the syringe holder are thermo-regulated with two 

independent water circuit run by mini-chillers (0 to 100°C) (Huber, Minichiller 300 

OLÉ).  

• Pressure controller: an Ultimus V (Nordson) controller controls pneumatic pressure 

in the syringe. It provides high-precision benchtop fluid dispensing control (1 mbar 

precision, up to 5 bar of pressure). With a serial interface, the Ultimus V provides full 

electronic control of dispense time and pressure settings. 

• Printing area: The bioprinter is assembled inside a microbiological safety hood that 

provides a vertical laminar flow, limiting sample contamination when working with 

cells and living material. A support structure has been designed for easy placement 

of glass slides on which lines are printed. It also provides suitable lighting conditions 

for capturing the filament's contour from horizontal and vertical perspectives. 

• Printing support: filaments are printed on top of glass slides, which are single-used.  

A piece of paper is glued on the printing surface to provide a homogeneous 

background in the photos from which the geometry will be retrieved.  

• Bioink: Pluronic® F-127 (Merck, P2443-250G) is used at a 25% w/v concentration 

as testing hydrogel. It is an artificial polymer, usually used as scaffolding material in 

bioprinting, which is stiffer at higher temperatures. The hydrogel is prepared diluting 

the proper amount of Pluronic powder within de-ionized water at low temperatures 

(4°C). Blue food coloring is added in the end to better visualize the filament in images 

(1 droplet/ 5 ml). The hydrogel is centrifuged at low temperatures to extract air 
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bubbles generated during mixing. A non-cell-laden bioink has been used for 

simplicity, but the same method is applicable for living cell-laden bioinks. 

• Syringe and needle: the hydrogel was placed inside a 10cc syringe (Nordson, P/N: 

7012114) connected to the pressure controller through an adapter assembly (Nordson, 

P/N: 7012239). Straight stainless steel needle of 0.2 mm ID, 0.42 mm OD and 12.7 

mm length (Nordson, P/N: 7005008) were used during the experiments showed in 

this paper. 

• Cameras: two different microscopic cameras (Dino-Lite, AM7915MZTL and 

AM7115MZTW) are mounted horizontally and vertically with respect to the printing 

plane on the bioprinter chassis. They offer high-resolution as well as a high focal 

length, which allows getting high-detail images at a distance. 

• Software: A PC hosts a C++ console program offering control over both cameras, 

the motion controller, and the pressure controller. It takes as input a .csv file with 

parameters assigned to each filament and guides the operator through experiment 

initial preparations (camera and extrusion needle calibration, material purge) and 

verification. It sequentially performs each experiment, requiring the operator to 

replace the glass slide in each iteration and to verify the extruded line. 

 

Fig. 1. A – Experimental setup within the bioprinter hood. The bioprinter Z-axis, (center) is mounted on the chassis 

(center). The X- and Y-axis are mounted under the buildplate (bottom). The vertical (left, yellow) and horizontal (center, 

yellow) camera supports fixed on the chassis. The printhead (center) with a syringe of bioink is fixed to the  

Z-axis. The glass slide support (bottom front, yellow) is mounted onto the buildplate. The pressure controller (left back, 

blue and white) is connected to the syringe through a pressure pipe. B – Detail of the bioprinter while extruding a filament 

3.2. EXPERIMENTAL PROTOCOL 

The successful implementation of extrusion-based bioprinting (EBB) relies on precise 

control of several operational parameters. These parameters include extrusion pressure or 

velocity, nozzle geometry (which can be either cylindrical or conical with a specified 

convergence angle), nozzle diameter, cartridge temperature, platform temperature, advance 

speed of the printhead in both the x and y-directions, and path-height and path-space. Each  

of these parameters plays a crucial role in determining the bioprinting process's outcome  

[20–22]. During the preparation of each experiment, the parameters to be set for each line to 

be printed in the essay are recorded in a table. The adjustable parameters are three: (i) needle 

height relative to the printing surface, (ii) advance speed and (iii) applied pneumatic pressure. 
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Other parameters that are not variable but are measured or controlled include the head of the 

printer's temperature, ambient temperature, bioprinter acceleration, needle diameter, needle 

length, and bioink type. The selected bioink temperature for this set of experiments is 30°C.  

The protocol runs as follows (cf. Fig. 2): 

 

Fig. 2. Experimental protocol 

• Preparation: A syringe full of material, and the desired needle mounted is attached 

to the bioprinter. The head of the printer's temperature is manually adjusted and left 

during 20 min to achieve thermal equilibrium inside the hydrogel. A glass slide is 

placed on the printing area, and the program is launched. An absolute reference inside 

the printing area allows camera calibration before the start of the experiment. 

Additionally, a second reference is placed next to the extruded line to serve as a refe-

rence in each photo. A material purge is performed to remove any air bubbles trapped 

in the needle. Finally, a test line is printed to verify that the preparation has been 

carried out correctly.  

• Sequential filament printing: For each line, the machine approaches the starting 

position. Horizontal displacement begins simultaneously with the activation of 

pressure, which is deactivated upon reaching the end of the trajectory of a total length 

of 20 mm. The velocity profile is trapezoidal, meaning there is constant acceleration 

and deceleration until the desired velocity is achieved. Subsequently, the needle is 

vertically retracted, and the plate is moved to the position where horizontal and 

vertical photographs are taken simultaneously. Finally, the plate is moved to a 

position where the current glass slide can be easily removed. The operator can then 
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request the repetition of the printing if anomalies (such as air bubbles) are detected 

or proceed with the next experiment once the plate has been changed. The horizontal 

and vertical images are then automatically saved. 

• Ending: once all the filaments have been printed, the program stops and 

automatically outputs a data file relating each photograph with its corresponding set 

of parameters. 

3.3. TEST SELECTION 

It is possible that for a given set of printing parameters, the flowrate is not sufficient 

(known as under-extrusion) and thus a non-continuous filament is obtained. This situation is 

to be avoided as the model is intended to predict the width and height of a continuous filament.  

In order to optimize the number of tests that are useful as input data, a prior test selection with 

a high probability of being continuous is carried out. For this purpose, an initial set of tests 

has been run in a very wide range of parameters, which will surely have a considerable number 

of non-continuous filaments. The classification of each filament as continuous or disconti-

nuous is associated with the values of the process parameters, which allows the construction 

of a Logistic Regression Model (LRM): 𝑓(𝑧) =
1

1+𝑒−𝑧
,  with 𝑧 = 𝐴 + 𝐵𝑝 + 𝐶𝑣 + 𝐷ℎ, 𝑝 

being the pressure expressed in bars, 𝑣 the speed expressed in mm/s and ℎ the needle height 

with respect to the printing surface expressed in mm, and A, B, C and D the parameters of the 

model. The resulting LMR predicts the probability (from 0 to 1) of a filament being 

continuous given a set of input parameters. This model is applicable, therefore, for making 

informed decisions about configuring parameters in filament printing experiments. 

A series of prior longitudinal filament printing tests (154 in total) have been conducted, 

involving the wide-ranging variation of different process parameters and variables, and 

observing the production of continuous or discontinuous filaments. The resulting LRM is the 

following: 𝑓(𝑧) =
1

1+𝑒−𝑧 ,  with 𝑧 = −4.3 + 2𝑝 − 0.1𝑣 − 0.3ℎ. The confusion matrix for the set 

of tests carried out with a probability threshold of 0.8, which reasonably ensures that the 

specific combination of parameters allows for the printing of continuous filaments, is the 

following (Table 1). 

The graphic on the right (cf. Fig. 3) shows the line which represents the LRM model 

isoquant at the chosen threshold (𝑓(𝑧) = 0.8) vs the data points used to compute the model. 

Any filament whose parameters fall under the line is given a probability higher than 0.8 to be 

continuous. It is possible to conclude that the layer height has a low effect on continuity and 

that probability of continuity increases with pressure and decreases with velocity. 

To produce a working model for the open-loop system exposed in this article, the 

geometry of each filament needs to be retrieved. This quantity of interest is usually measured 

manually (approximative width and height) or subjectively (good and bad shape). The auto-

matization of the geometry measurement for each filament through image analysis is 

proposed. Indeed, the Artificial Intelligence field also includes Image Processing and 

Computer Vision techniques. Those methods can be applied on an image to detect an object 

(the deposited filament) and measure the widths and heights all along the shape. 
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Table 1. Confusion matrix of the test dataset applying the threshold 𝑓(𝑧) = 0.8 

 Negative  Positive 

False 25 5 

True 31 93 

 

Fig. 3. Threshold of the LRM model f(z) = 0.8 vs data points used to compute the model 

3.4. IMAGE PROCESSING 

This way, the average quantity of interest (width and height) is retrieved but also its 

variance along the filament. Hence, it can determine whether the filament edges are regular 

(c.f. Fig. 4). A filament with regular edges presents a very low variance width and height 

when irregular edges show a very high variance. 

A.  B.  

Fig. 4. A. – Filament with regular edges; B. – Filament with irregular edges 

Photographs of the result filaments are automatically taken during the experiment from 

the side and from above (c.f. Fig. 5) to compute respectively the height and the width. 

A.  B.  

Fig. 5. Photo of the filament automatically shot at the end of the process from the A. side and from B. above 
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Based on the dye color, a HSV (Hue Saturation Value) conversion helps filtering the 

pixels in the image and approximatively detect the filament location (c.f. Fig. 6). 

A.  B.  

Fig 6. HSV encoding of the photo from above the filament: A. – Binary image filtered, B. – Approximative location of 

the filament in the image 

Once the approximative location computed, only the filament remains on the cropped 

image. Therefore, the only remaining edges are those of the filament. Using the Canny edges 

detection with the scikit-image library in Python [27], all pixels around the filament can be 

retrieved (cf. Fig. 7). From those pixels’ coordinates, the width and the height along the 

filament can be computed (c.f. Fig. 8). Horizontal and vertical images provide a resolution  

of 11 µm and 15 µm per pixel, respectively. 

 

 Fig. 7. Filament edges detected with Canny method [27] on the cropped image 

A.  B.  

Fig. 8. A. – Width and B. – Height automatically computed along the printed filament with image processing 

 This approach automatizes the measure of the filament with more consistent and 

relevant information extraction. Thus, a database relating the process parameters (“Inputs” in 

Table 2) with those quantities of interest (“Outputs” in Table 2) is built. 

Table 2. Dataset header with process parameters (inputs) to relate with quantities of interest (outputs) 

INPUTS OUTPUTS 

Pressure 
Advance 

Speed 

Nozzle 

Height 

Width 

Average 

Width 

Variance 

Height 

Average 

Height 

Variance 

This dataset counts 420 filaments (140 distinct parameter combinations repeated 3 

times) is used for creating a data-driven manifold described in next section. 
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3.5. MACHINE LEARNING FOR MANIFOLD PREDICTIONS 

The objective of this section is to create a manifold of the filament dimensions 

depending on the process parameters. This approach is data-driven, based on the experimental 

results, and modeled using a Machine Learning algorithm. Thus, a direct model is created, 

predicting the filament dimensions and shape from any process parameters queried. For the 

data-driven Machine Learning, the Support Vector Machine (SVM) [28, 29] fits the require-

ments for non-linearity and data sparsity. Indeed, with three parameters involved in the 

process (Pressure, Advance Speed and Nozzle Distance), Deep Learning algorithms like 

Neural Network Regressor, would require much more than 420 distinct parameter 

combinations [30, 31]. Fitting the 420 points available with Machine Learning built  

a manifold surface for each of the studied outputs (Width Average, Width Variance, Height 

Average, Height Variance). This is the direct model. The SVM algorithm was first conceived 

for classification problems, i.e. for separating samples into classes. The algorithm computes 

by iterations a hyperplane with a margin whose objective is to separate at best the training 

points available. This margin is built to be the largest possible and containing the minimum 

number of training points. As this relation here is not linear, this cannot be obtained in the 

original space. Therefore, the idea of the SVM algorithm is to find a higher dimensional space 

where this margin can be linear, using a kernel application. In our case, a non-linear Radial 

Basis Function is used: (𝑥, 𝑦) ⟼ (𝑥, 𝑦, 𝑧), with 𝑧 = exp (−𝛾(𝑥2 + 𝑦2)). 

Fig. 9. Data-driven manifolds computed with SVM regressor for A. Width Average, B. Height Average,  

C. Width Variance, D. Height Variance, for Nozzle Height = 0.2 mm 

A. R2 = 0.95; MSE = 5.0µm

 

B. R2 = 0.93; MSE = 3.1µm

 

C. R2 = 0.80; MSE = 0.4µm

 

D. R2 = 0.81; MSE = 0.4µm
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This classification method is extended to solve regression problems where the objective 

is to predict a scalar rather than a class. The manifolds for each quantity of interest are 

presented in Fig. 9. On these plots, the points represent the experimental data used to train the 

SVM model in green (90% of the experimental data). The red points represent the 

experimental data used to validate the model (10% of the experimental data). The R2 score 

and the Mean Square Error (MSE) results are given for each manifold, presenting a good 

prediction accuracy. 

 With these manifolds of the direct model, the filament shape can be predicted for any 

set of parameters. 

3.6. STOCHASTIC MACHINE LEARNING MODELS 

The experimental context involves an issue with repeatability. Indeed, with the same 

process parameters, different results might be obtained, depending on the bioink. A metric for 

this geometric repeatability is need. The same set of parameters has been repeated three times 

and the filament measure the same way as previously. Therefore, the variance of the average 

width and height between those three repetitions can be measured. The higher the variance, 

the less repeatable the experiment was. The final objective will be there to predict numerically 

the repeatability of one experiment before running it. The same way as in the previous section, 

a SVM model is built to predict such metrics. The results are presented in Fig. 10. The higher 

the score, the less repeatable the combination of parameters. 

A. R2 = 0.82; MSE = 0.2µm

 

B. R2 = 0.76; MSE = 0.1µm

 

Fig. 10. Data-driven manifolds computed with SVM regressor for A. Width Repeatability, B. Height Repeatability, for 

Nozzle Height = 0.2 mm  

Two direct models have been built to predict the width, height, and repeatability for any 

given combination of parameters. This way, before testing by experimentation a new set of 

process parameters, it can be tested numerically to get the results in real-time. If the numerical 

answer is acceptable, the experiment can be led. However, a better use of this manifold is for 

the numerical model to lead the experiment and advice a combination of parameters to run 

for a targeted geometry. This is presented in the next section. 
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3.7. INVERSE MODEL FOR PARAMETERS OPTIMIZATION 

For the numerical manifold to advice parameters for a targeted width and height, the 

direct model is queried in a range of parameters to optimize those quantities of interest. Thus, 

from the direct model built with the SVM algorithm, an inverse model is built here minimizing 

the difference between the predicted width and height on the one hand and target width and 

height on the other hand. This approach can retrieve multiple sets of possible parameters. This 

can be sorted or filtered using the repeatability model to assure the consistency of the 

experiment. This inverse model is presented in Fig. 11. 

 

Fig. 11. Inverse model based on the manifolds predicted using the Machine Learning direct model to advice optimal 

sets of process parameters 

4. CONCLUSIONS AND PERSPECTIVES 

This new numerical approach involving Machine Learning to lead experiments with 

optimal choice of process parameters shows promising result. It has been applied here in the 

context of bioprinting with three main parameters (Pressure, Advance Speed and Nozzle 

Height) with satisfying geometry predictions. An open-loop control system has been built this 

way by the automatization of (i) capturing photos of the printed cord (ii) computing its actual 

geometry with image processing (iii) advising in real-time optimal parameters with an inverse 

model based on Machine Learning. Specifically, a small quantity of bioink (under 5 ml) has 

been used to print a series of 420 filaments in a semi-automatic setup. This data has been used 

to automatically compute a high accuracy Machine-Learning model (R2> 0.91) covering three 

key printing parameters in a wide range. This enables to advice printing parameters that 

produce a filament of specific size with a mean squared error of 5.0 µm for the width and 

3.1 µm for the height of the filaments. 

 In conclusion, the following step would be to take advantage of this real-time approach 

to compute optimal parameters during the bioprinting [32] with a closed-loop control [33]. 

Indeed, a deviation can be automatically detected between the printed bead and the target 

geometry with the steps (i) automatic captures and (ii) image processing. From this deviation, 

an optimal set of parameters can be advised to correct the continuation of the printing. 

 This will be validated in a closed-loop perspective with experimental data with objective 

of real-time in-process correction. 
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